ÀÛ¼ºÀÏ : 15-08-02 11:19
¹®Á¦ Áú¹®
 ±Û¾´ÀÌ : ¹éµµ¿ø(do1006)
Á¶È¸ : 8,076  
   http://usaco.org/index.php?page=feb15results [5815]

USACO 2015 February Contest, Silver

Cow Hopscotch ¹®Á¦ÀÔ´Ï´Ù.

Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a variant of the game for themselves to play. Being played by clumsy animals weighing nearly a ton, Cow Hopscotch almost always ends in disaster, but this has surprisingly not deterred the cows from attempting to play nearly every afternoon.

The game is played on an R by C grid (2 <= R <= 100, 2 <= C <= 100), where each square is labeled with an integer in the range 1..K (1 <= K <= R*C). Cows start in the top-left square and move to the bottom-right square by a sequence of jumps, where a jump is valid if and only if

1) You are jumping to a square labeled with a different integer than your current square,

2) The square that you are jumping to is at least one row below the current square that you are on, and

3) The square that you are jumping to is at least one column to the right of the current square that you are on.

Please help the cows compute the number of different possible sequences of valid jumps that will take them from the top-left square to the bottom-right square.

INPUT FORMAT: (file hopscotch.in)

The first line contains the integers R, C, and K. The next R lines will each contain C integers, each in the range 1..K.

OUTPUT FORMAT: (file hopscotch.out)

Output the number of different ways one can jump from the top-left square to the bottom-right square, mod 1000000007.

SAMPLE INPUT:

4 4 4
1 1 1 1
1 3 2 1
1 2 4 1
1 1 1 1

SAMPLE OUTPUT:

5

ÇÁ·Î±×·¥À» ´ÙÀ½°ú °°ÀÌ ÀÛ¼ºÇߴµ¥

#include <stdio.h>
#define MOD 1000000007
int r,c,k;
long long int a[101][101];
long long int d[101][101];
int mod(int x){
    return (x+MOD)%MOD;
}
int main(){
    scanf("%d%d%d",&r,&c,&k);
    int i,j,l,m;
    for(i=0;i<r;i++)
        for(j=0;j<c;j++)
            fscanf(inf,"%lld",&a[i][j]);
    d[0][0] = 1;
    for(i=0;i<r;i++){
        for(j=0;j<c;j++){
            for(l=i+1;l<r;l++){
                for(m=j+1;m<c;m++){
                    if(a[i][j]!=a[l][m]) d[l][m] = mod(d[i][j]+d[l][m]);
                }
            }
        }
    }
    printf("%lld",d[r-1][c-1]);
    return 0;
}

4°³ test case¸¸ Á¤´äÀÌ Ãâ·ÂµÇ°í, ´Ù¸¥ test caseµéÀº Á¤´äÀÌ Ãâ·ÂµÇÁö ¾Ê½À´Ï´Ù.
Ç®ÀÌ¿¡¼­µµ À§¿Í À¯»çÇÏ°Ô ÄÚµùÀÌ µÇ¾î Àִµ¥, ¹«¾ùÀÌ ¹®Á¦ÀÎÁö Àß ¸ð¸£°Ú½À´Ï´Ù.

Ç®ÀÌ

The grid is big enough that it is not possible for us to merely try all possible paths.

We simply care about how many ways there are to get to a given square though. Let f(x,y)  be the number of ways there are to get to row x  and column y  . Note that f(x,y)  is simply the sum of all f(i,j)  where i<x  , j<y  , and the numbers in those squares don't match. This gives us an O(R 2 C 2 )  algorithm, which is fast enough for our purposes.


°¨»çÇÕ´Ï´Ù.



ÄĽºÄð 15-08-12 18:43
 
À̰÷¿¡¼­ ´äº¯µå¸± ³»¿ëÀº ¾Æ´Ñ°Å °°Áö¸¸ °£´ÜÇÏ°Ô »ìÆìº¸¸é int mod(int x) ÀÌ ÇÔ¼ö¿¡ ¹®Á¦°¡ Àִ°ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

±¸ÇØ¾ß ÇÏ´Â ´ë»óÀº ¸ðµÎ long long int ÇüÀε¥ ÀÌ ÇÔ¼ö¿¡¼­´Â int·Î ¹Þ¾Æ¼­ int·Î return Çϴ±º¿ä.
°è»êÇÏ´Â °úÁ¤¿¡¼­ Á¤¼öÀÇ ¹üÀ§¸¦ ³Ñ¾î°¥ ¼ö Àֱ⠶§¹®¿¡ Å« µ¥ÀÌÅÍ¿¡¼­´Â Á¤È®ÇÑ °ªÀÌ ³ª¿ÀÁö ¾ÊÀ» ¼ö ÀÖÀ»°Å °°½À´Ï´Ù.
 
 

Total 667
¹øÈ£ Á¦   ¸ñ ±Û¾´ÀÌ ³¯Â¥ Á¶È¸
367 ÀÚ±âÁÖµµ c ÇÁ·Î±×·¡¹Ö eºÏ ±¸ÀÔ (1) ÀÌÁ¾»ó 09-02 4108
366 ÀÚ±âÁÖµµ c¾ð¾î Ãâ·Â Çü¼ºÆò°¡ 4¹ø¹®Á¦¿¡¼­ ¾Æ·¡¿Í °°ÀÌ ÀÛ¼ºÇÏ¡¦ (1) ±è¸íÁø 08-20 4886
365 2008³â º»¼±±âÃâ ¹®Á¦ °­ÀǸ¦ º¸°í½ÍÀºµ¥.. (1) ¹Ú±â¸² 08-14 4151
364 ¹®Á¦ Áú¹® (1) ¹éµµ¿ø 08-02 8077
363 µ¿¿µ»ó ½ÇÇà¿À·ù (1) Áø¿ì¼· 07-25 4291
362 ÀÚ±âÁÖµµÀû C ¾ð¾î ÇÁ·Î±×·¡¹Ö ÀÏ¿¬¹øÈ£ ¿À·ù·Î ³ª¿É´Ï´Ù. (2) ±è¾Ö¼÷ 07-25 5556
361 µ¿¿µ»ó Àç»ý ¿À·ù (1) ¹Ú¼±¿ì 07-24 4098
360 °­ÀÇ µ¿¿µ»ó Àç»ýÀÌ µÇÁö ¾Ê½À´Ï´Ù. (1) À̵¿À± 07-24 4120
359 ºñÁÖ¾ó 2013 scanf ¿À·ù? (3) ±èÅ¿í 07-09 4579
358 ÀÚ±âÁÖµµc¾ð¾îÇÁ·Î±×·¡¹Ö ebook ±¸ÀÔ (1) ±èº´¼± 07-05 7947
357 »ç³É²Û ¹®Á¦^^ (1) ±Ã±ÝÀÌ 06-30 6099
356 2013³â ÁßµîºÎ 1¹ø °ø¾à¼ö¹®Á¦ (1) ±Ã±ÝÀÌ 06-27 4361
355 °­Á ½Åû º¯°æ °ü·Ã ¹®ÀÇ (1) À̵¿À± 06-25 4335
354 2011³â Àü±¹´ëȸ Ãʵî 2¹ø °ø¾à¼ö ¹®Á¦.. (1) ±Ã±ÝÀÌ 06-24 4592
353 ±¸Á¶Ã¼ ÀÚ°¡Áø´Ü 6¹ø ¸»Àä (1) ±èº¸°æ 06-21 5557
352 2011³â Àü±¹´ëȸ ¹®Á¦Ç®ÀÌ Áß ÃʵîºÎ 2¹ø¹®Á¦ ÇØ¼³À» µéÀ»¼ö°¡ ¡¦ (1) ȲÀç±Ù 06-08 4728
351 °¢ °úÁ¤¿¡¼­ ¿¹Á¦·Î ¼³¸íµÈ ¼Ò½ºÄÚµå ¼³¸í ¹× Á¦°øÀº ¾îµð¼­ ¹Þ¡¦ (2) °­ÇüÁ¾ 06-06 4442
350 À̹ø º»¼±´ëȸ Ç¥ÁØ ÀÔÃâ·Â ¹®Á¦ ¾î¶»°Ô µÇ´Â°ÅÁÒ? (1) ±è±æÅ 06-01 4359
349 ÀÌ ¹®Á¦ ¾î¶»°Ô Ç®¾î¾ß Çϳª¿ä? (3) ±Ã±ÝÀÌ 05-22 4574
348 ±Þ!º»¼±¿¡¼­ C++¿ëÀ¸·Î ÀÔÃâ·ÂÀÛ¼ºÇÏ´Â ¹æ¹ýÀº? (3) À̹ÌÈ­ 05-16 4724
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30    

ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸Ã³¸®¹æÄ§ | ÀÌ¿ë¾à°ü | ã¾Æ¿À½Ã´Â ±æ | À̸ÞÀÏÁÖ¼Ò ¹«´Ü¼öÁý°ÅºÎ | »ç¾÷ÀÚÁ¤º¸È®ÀÎ
°æ±âµµ ¾È¾ç½Ã µ¿¾È±¸ È£°èµ¿ 1065-10 Çù¼º°ñµåÇÁ¶óÀÚ 601È£ ÇÑÄÄ¿¡µàÄÉÀ̼Ç(ÁÖ) TEL : 031-388-8840 FAX : 031-388-0996
´ëÇ¥ÀÚ : ±èµ¿±Ô »ç¾÷ÀÚ¹øÈ£ : 130-86-02870 Åë½ÅÆÇ¸Å¾÷½Å°í¹øÈ£ : Á¦ 2010-°æ±â¾È¾ç-888È£
COPYTIGHT(C) ÇÑÄÄ¿¡µàÄÉÀ̼Ç(ÁÖ), ALL RIGHT RESERVED.
´ãÀº°­Á : 0